How can olmOCR be installed and used locally?
Question
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Lorem ipsum dolor sit amet, consectetur adipiscing elit.Morbi adipiscing gravdio, sit amet suscipit risus ultrices eu.Fusce viverra neque at purus laoreet consequa.Vivamus vulputate posuere nisl quis consequat.
Answers ( 4 )
To install and use olmOCR locally:
1. Install dependencies: `poppler-utils`, `ttf-mscorefonts-installer`, `msttcorefonts`, `fonts-crosextra-caladea`, `fonts-crosextra-carlito`, `gsfonts`, `lcdf-typetools`.
2. Create and activate a Conda environment: `conda create -n olmocr python=3.11` and `conda activate olmocr`.
3. Clone the repository and install: `git clone https://github.com/allenai/olmocr.git`, `cd olmocr`, `pip install -e .[gpu]`.
4. Process PDFs using commands like `python -m olmocr.pipeline ./localworkspace --pdfs tests/gnarly_pdfs/horribleocr.pdf`.
The DPO project can be used for training through command-line examples:
- **SFT Example**: `python -u train.py model=pythia69 datasets=[hh] loss=sft exp_name=anthropic_dpo_pythia69 gradient_accumulation_steps=2 batch_size=64 eval_batch_size=32 trainer=FSDPTrainer sample_during_eval=false`
- **DPO Example**: `python -u train.py model=pythia69 datasets=[hh] loss=dpo loss.beta=0.1 model.archive=/path/to/checkpoint/from/sft/step-XXXX/policy.pt exp_name=anthropic_dpo_pythia69 gradient_accumulation_steps=2 batch_size=32 eval_batch_size=32 trainer=FSDPTrainer sample_during_eval=false`
- **Custom Datasets**: Users can update `preference_datasets.py` and pass custom datasets via `datasets=[xyz]`.
OpenAI Baselines PPO supports environments provided by Gym, such as CartPole and Atari games, as well as custom environments. For example, users can train agents in Atari Pong using the command `python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4` (40 million frames = 10 million timesteps) or in Mujoco Ant using `python -m baselines.run --alg=ppo2 --env=Ant-v2 --num_timesteps=1e6` (1 million timesteps).
Examples of training commands for OpenAI Baselines PPO include:
- **Atari Pong**: `python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4` (40 million frames = 10 million timesteps)
- **Mujoco Ant**: `python -m baselines.run --alg=ppo2 --env=Ant-v2 --num_timesteps=1e6` (1 million timesteps)
These commands are used to train agents in specific environments, demonstrating the algorithm's application in gaming and robotics.